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Abstract

The contact problem of a rubber notch with a rigid wedge is analyzed based on large strain theory. The basic
equations of deformation ®eld near the notch corner are derived and solved. Analytical solution is obtained for
expanding sector while the numerical solution is given for two shrinking sectors. The singularity exponent of stress

and strain ®eld is expressed by the angle of rigid wedge and the constitutive parameter of the material. A special
interesting case is that a half rubber plane contacts with a rigid wedge, for which the completely analytical solutions
are obtained for both expanding sector and shrinking sectors. The analysis of this paper is also valid for the contact

problem of a rubber wedge with a rigid wedge. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ®rst solution to contact problem was given by Hertz (1881) for two spherical bodies, based on

linear elastic theory. The general contact problem of two bodies with smooth surface can be solved by

means of integral equations or calculated by ®nite element method.

When the contact surfaces contain vertex, the problem cannot be solved in the framework of

in®nitesimal strain theory because it will give zero contact area. Therefore, the vertex contact problem

must be solved by large strain theory. It should be noted that in nonlinear elasticity, the summation

principle is not valid, therefore, the solution of a concentrated force problem cannot be used to solve

the contact problem. That is why the vertex contact problem has not been solved until now.
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In the present paper, the vertex contact problem is solved based on the elastic law given by Gao
(1997), the sector division method given by Gao (1990) is also used.

2. Basic formulae

Consider a three-dimensional domain of rubber material. P and Q denote the position vectors of a
point before and after deformation respectively. xi �i � 1, 2, 3� is the Lagrangian coordinate. Two set of
local triads can be de®ned as

Pi � @P

@xi
, Qi �

@Q

@xi
�1�

Three independent invariants based on Pi and Qi can be introduced8><>:
I � �Pi � P j�ÿQi � Qj

�
, Iÿ1 �

ÿ
Pi � Pj

�ÿ
Qi � Q j

�
J � VQ

VP
, V� � � �1 , �2 , �3 �

: �2�

in which summation rule is implied; Pi and Qi are the conjugates of Pi and Qi, respectively, i.e. Pi � P j�
d j
i , Qi � Q j�d j

i ; ��1, �2, �3� denotes the mixed product of vectors �1, �2 and �3: A strain energy function
per undeformed unit volume is proposed by Gao (1997),

U � a
ÿ
I n � I n

ÿ1
� �3�

This strain energy was successfully used in solving a series of typical problems, (Gao (1997, 1998,
1999a)).

Mooney (1940) and Rivlin (1949) pointed out that the strain energy function can be expanded as an
in®nite series of I and I2,

U �
X1
m,n�0

Cmn�Iÿ 3�m�I2 ÿ 3�n �4�

where

I2 � �Pi � P j �ÿQj � Qk

��Pk � Pl �ÿQl � Qi

� �5�

Because Iÿ1 can be expressed as

Iÿ1 � 1

2J 2

ÿ
I 2 ÿ I2

�
�6�

then Eq. (3) can be written as

U � a

�
I n � 1

2nJ 2n

ÿ
I 2 ÿ I2

�n� �7�

For incompressible material, J � 1, evidently, form (3) belongs to the class of function (4), but for
compressible material (3) cannot be contained in form (4). The original purpose of form (3) is to reduce
the energy function as simple as possible but it must re¯ect the basic nature of solid materials. Actually
the ®rst term of (3) mainly expresses the resistance of material to large tension while the second term of
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(3) mainly deputes to the resistance to tremendous compression. Therefore with these two terms, the
material natures are complete. The detailed discussion on the material behavior governed by (3) can be
found in Gao (1999b).

From strain energy U, the Cauchy stress can be obtained,

t � J ÿ1
@U

@Qi


 Qi �8�

where 
 is the dyadic symbol.
The following relations are important,8>>><>>>:

@I

@Qi


 Qi � 2d,
@Iÿ1
@Qi


 Qi � ÿ2d ÿ1

@J

@Qi


 Qi � J � E
�9�

in which8<: d � �Pi � P j �Qi 
 Qj, dÿ1 � ÿPi � Pj

�
Qi 
 Q j

E � Pi 
 Pi � Qi 
 Qi
�10�

Eqs. (3), (8)±(9) can be combined to give

t � 2naJ ÿ1
ÿ
I nÿ1d ÿ I nÿ1

ÿ1 dÿ1
�

�11�

The equilibrium equation can be written as

@

@xi

ÿ
VQt � Qi

� � 0 �12�

According to Eqs. (2) and (8), the equivalent form of (12) is

@

@xi

�
VP

@U

@Qi

�
� 0 �13�

The traction free boundary condition is

t � B � 0 �14�

where, B is the unit normal vector of the deformed boundary, i.e.

B � dQ

db
� Qi �

dxi

db
�15�

in which b is the distance to the boundary from outside. Eqs. (8) and (15) can be used to rewrite Eq.
(14) as

@U

@Qi

� @b
@xi
� 0 �16�
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3. Deformation pattern

Shown in Fig. 1(a) and (b) are the cross sections of a notched rubber with a rigid wedge before and
after deformation respectively. The angle of wedge is 2A while the angle of rubber notch is 2B.

For simplicity, only the symmetric loading case is considered here. In order to describe the
deformation, the vicinity of notch corner is divided into di�erent sectors. SH and SH ' are called
shrinking sectors; before deformation they occupy almost the whole notch corner domain, but after
deformation they become very narrow and located near the boundaries of the rigid wedge, as shown in
Fig. 1. EX is called expanding sector; before deformation it is very narrow, but after deformation it
becomes very wide and occupies almost the whole notch corner domain. Because of the di�erent
deformation feature, sectors SH (SH ') and EX must be described by di�erent mapping functions. Two
sets of Lagrangian coordinates are introduced such that R, Y, Z are cylinder coordinates before
deformation while r, y, z are cylinder coordinates after deformation. The deformation is considered as
plane strain case so Z � z, and it is enough to consider the mapping functions from �r, y� to �R, Y�: In
shrinking sectors SH, the mapping functions are assumed as,�

R � r1�bf�x�, Y � g�x�
x � rÿa�yÿ p� A�, ÿ1 < x < 0

: �17�

where a, b are positive exponents, A is the half angle of the rigid wedge. The mapping functions for
sector SH ' can be given similarly, but it is omitted.

In sector EX, the mapping functions are assumed as

R � r1ÿdh�y�, Y � rgm�y� jyj < pÿ A �18�
in which d and g are positive exponents.
Actually, there is no exact boundary between di�erent sectors. Mapping functions (17) and (18) are

convertible one to another at the fuzzy boundaries.

Fig. 1. A rubber notch with a rigid wedge (a) before deformation (b) after deformation.
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4. Expanding sector EX

Let eR, eY, er, ey denote the unit vectors before and after deformation, in �R, Y� and �r, y� systems
respectively, i.e.

eR � @P

@R
� PR, eY � 1

R

@P

@Y
� 1

R
PY �19�

er � @Q

@r
� Qr, ey � 1

r

@Q

@y
� 1

r
Qy �20�

then according to Eqs. (18) and (19), it follows that8>><>>:
Pr � @P

@r
� rÿdh

��1ÿ d�eR � grgmeY
�

Py � @P

@y
� r1ÿd�h 0eR � rghm 0eY �

�21�

Eq. (21) can be inverted to give�
Pr � rdÿgqÿ1�rghm 0eR ÿ h 0eY �
Py � rdÿgÿ1qÿ1h

�ÿ grgmeR � �1ÿ d�eY
� �22�

where

q � h
��1ÿ d�hm 0 ÿ gh 0m

� �23�

Using (2) and (19)±(22), it follows that,�
I � r2dÿ2gqÿ2p, Iÿ1 � rÿ2dp
J � r2dgqÿ1

�24�

where

p � h 0 2 � �1ÿ d�2h2 �25�

Eq. (24) shows that q is a quantity that is inverse proportion to volume in¯ation. Using Eqs. (19)±(22)
and (10), it follows that,

d � r2dÿ2gqÿ2
h
h 0 2er 
 er � �1ÿ d�2h2ey 
 ey ÿ �1ÿ d�hh 0�er 
 ey � ey 
 er �

i
�26�

dÿ1 � rÿ2d
h
h 0 2ey 
 ey � �1ÿ d�2h2er 
 er � �1ÿ d�hh 0�er 
 ey � ey 
 er �

i
�27�

In order to match the two terms in Eq. (11), it is required that,

g � 2d �28�

Then Eqs. (11) and (24)±(27) are combined to give
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8>><>>:
VQt � Qr � 2nar1ÿ2ndpnÿ1q

n�
h 0 2Yÿ �1ÿ d�2h2

�
er ÿ �1ÿ d�hh 0�1� Y�ey

o
VQt � Qy � 2narÿ2ndpnÿ1q

n
ÿ �1ÿ d�hh 0�1� Y�er �

�
�1ÿ d�2h2Yÿ h 0 2

�
ey

o �29�

in which Y is given by q,

Y � qÿ2n �30�
Substituting Eq. (29) into (12), after a long manipulation it follows that�

h 00 � d
1ÿ d

h 0 2

h
� �1ÿ d�h

�
Dÿ 2nd�1ÿ d�3Yh3 ÿ 2ndY

1ÿ d
h 0 4

h
ÿ 4d�1ÿ d�nYhh 0 2 � 0 �31�

1ÿ d
q

h2wm 00 �
�
h 0

h
� 1ÿ dÿ g

q
hh 0m 0

�
w� 2hh 0

�
nÿ 1

p

�
h 0 2 ÿ �1ÿ d�2Yh2

�
� �1ÿ d�

�
1ÿ nd

ÿ �nÿ 1�dY
��
� h 00

�
2h 0 ÿ gmh

q
w� 2�nÿ 1�

p
h 0
�
h 0 2 ÿ �1ÿ d�2Yh2

��
� 0 �32�

in which8>><>>:
D �

�
�2n� 1�Yÿ 1

2nÿ 1

�
h 0 2 � �1ÿ d�2Y�1� Y�h2

w � �2nÿ 1��1ÿ d�2Yh2 � h 0 2
�33�

Eqs. (31) and (32) can be solved numerically. The symmetric boundary conditions at y � 0 are,

h 0�0� � 0, h�0� � h0 �34�

m�0� � 0, m 0�0� � m1 �35�
At y � pÿ A, the natural boundary conditions must be satis®ed to connect with sector SH,

h�pÿ A� � 0 �36�

m�pÿ A� � 1 �37�
So, there are three parameters h0, m and d to be determined. h0 can be considered as a free parameter to
indicate the amplitude of the ®eld. m1 and d can be adjusted to meet the condition (36) and (37) as well
as the match conditions with shrinking sectors. However, the behavior of functions h and m is not easy
to be revealed because there are two parameters d and m1: It is found by Gao (1998a) that for a wedge
acted by a concentrated force, in sector EX,

q � �2nÿ 1�
1
2n �38�

The result for a concentrated force problem hints us to test relation (38) for Eqs. (31) and (32).
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Surprisingly, when (38) is used, Eqs. (31) and (32) become the same equation as,�
h 00 � d

1ÿ d
h 0 2

h
� �1ÿ d�h

�"
h 0 2 � �1ÿ d�2

2nÿ 1
h2

#
ÿ d

1ÿ d
p2

h
� 0 �39�

Therefore (38) is a solution of (31) and (32), then (31) and (32) are reduced to (38) and (39).
Further, (38) and (39) can be rewritten as�

h 00 � �1ÿ d�2h
��
1� 2�nÿ 1�h 0 2pÿ1

�
ÿ 2�nÿ 1�d�1ÿ d�h � 0 �40�

m 0 � 1

�1ÿ d�h2
h
�2nÿ 1�

1
2n�ghh 0m

i
�41�

For Eq. (41), m 0�0� �� m1� is no longer a free parameter while it depends on h0,

m 0�0� � 1

�1ÿ d�h20
�2nÿ 1�

1
2n �42�

Therefore the free parameters are only d and h0: Evidently, h0 has no relation with condition (36), so d
can be determined by (36) and the ®rst of (34). The analytical solution of Eq. (40) under boundary
conditions (34) and (36) can be found in Gao (1999a),8>>>>><>>>>>:

d � ne

�2nÿ 1��1ÿ e�

(�
1� 1ÿ e

n2e
�2nÿ 1�

�1=2
ÿ1
)

e �
�
1ÿ 2A

p

�2
�43�

8>>>>>>>>><>>>>>>>>>:

h � h0
�
1ÿ �2nÿ 1�d

�d
2
�
nÿ �2nÿ 1�dÿ �nÿ 1�cos 2x

�ÿd
2 cos x

y � xÿ d
e�1ÿ d�arctg�e � cot x� � p

2
ÿ A

e �
�

1ÿ �2nÿ 1�d
�2nÿ 1��1ÿ d�

�1=2
, 0 < x <

p
2

�44�

where x is introduced as

tgx � h 0

�1ÿ d�h �45�

x can be considered as a parametric variable. Eq. (43) shows that the singular exponent d only depends
on exponent n and angle A but not on angle B.

A special case is A � 0, then the contact problem becomes a concentrated force problem, it follows
that

d � 1

2n
�46�

Y.C. Gao, T.J. Gao / International Journal of Solids and Structures 37 (2000) 4319±4334 4325



8>>>>>>>><>>>>>>>>:
h � h0

�
1ÿ �2nÿ 1�d

�d
2

�
n

2

�1ÿd
2 �O� cos y�

1
2

�
Oÿ

�
1ÿ 1

n

�
cos y

�1
2ÿ

1

2n

O �
"
1ÿ

�
1ÿ 1

n

�2

sin2 y

#1
2

�47�

Eq. (46) is consistent with the result obtained by Gao (1998), but the analytical solution (47) has not
been obtained there. When h is obtained, function m can calculated according to Eq. (41) and the ®rst
of conditions (35).

5. Shrinking sector SH

In sector SH, the mapping function (17) is adopted. For simplicity, we introduce the �Z, x� coordinate
as shown in Fig. 2,

Z � r

�
1� a

2
y�

2

�
, x � rÿay�, y� � yÿ p� A �48�

in which y� is a very small variable. When high order terms of y� are neglected, �Z, x� are orthogonal
coordinates. The inverse expression of (48) is

r � Z
�
1ÿ a

2
Z2ax2

�
, y� � Zax �49�

then (17) can be written as

R � Z1�bf�x�, Y � g�x� �50�
According to Eqs. (1), (19), (20), (49) and (50), it follows that,

QZ � er � Zaaxey, Qx � Z1�a
ÿ
ey ÿ Zaaxer

� �51�

Fig. 2. The coordinate �Z, x� in sector SH.
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PZ � �1� b�ZbfeR, Px � Z1�b
ÿ
f 0eR � fg 0eY

� �52�
From Eqs. (51) and (52) following is obtained,

QZ � er � Zaaxey, Qx � Zÿ1ÿa
ÿ
ey ÿ Zaaxer

� �53�

PZ � Zÿbvÿ1
ÿ
fg 0eR ÿ f 0eY

�
, Px � Zÿ1ÿb�1� b�fvÿ1eY �54�

where

v � �1� b�f 2g 0 �55�
From Eqs. (2), (51)±(54), the invariants are obtained,�

I � Zÿ2buvÿ2 Iÿ1 � Z2bÿ2au
J � Zaÿ2bvÿ1 u � f 0 2 � f 2g 0 2

�56�

Eqs. (51)±(54) and (10) can be used to give

d � Zÿ2bvÿ2
h
uQZ 
 QZ ÿ Zÿ1�1� b�ff 0ÿQZ 
 Qx � Qx 
 QZ

�� Zÿ2�1� b�2f 2Qx 
 Qx

i
�57�

dÿ1 � Z2b
�
�1� b�2f 2QZ 
 QZ � Z�1� b�ff 0

ÿ
Qx 
 QZ � QZ 
 Qx

�
� Z2uQx 
 Qx

�
�58�

In order to match the singularity of d and dÿ1 in Eq. (11), it is required that

a � 2b �59�
then only taking the dominant terms, Eqs. (11), (53), (57) and (58) are combined to obtain8<:VQt � QZ � 2naZ1�aÿ2nbunÿ1v

�
uY �eZ ÿ Za�1� Y ���1� b�ff 0ex

�
VQt � Qx � 2naZÿ2nbunÿ1v

�ÿ Za�1� Y ���1� b�ff 0eZ ÿ uex
� �60�

in which

Y � � vÿ2n �61�

eZ � QZ, ex � Zÿ1ÿaQx �62�

In order to derive the equilibrium equation, the following relations are needed,8>>><>>>:
@eZ
@Z
� a�1ÿ a�Zaÿ1xey,

@ex
@Z
� ÿa�1� a�Zaÿ1xer

@eZ
@x
� �1� a�Zaey, @ex

@x
� ÿ�1� a�Zaer

�63�

Substituting (60) and (63) into (12) and only taking the dominant terms, we obtain�
vun � const � T
�1� b�

�
uÿ1�1� Y ��f 0f

� 0ÿ�1� a��1� Y �� � 2nbY � � 0
�64�
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Eq. (64) can be reduced as8>>><>>>:
f 00 ÿ fg 0 2 ÿ

�
u

2n
� f 2g 0 2

�
D� � 0

g 00 � 2
f 0

f
g 0 � f 0g 0D� � 0

�65�

where

D� � b
1� b

� u
f

�
1ÿ 2nY �

1� Y �

�"�
1� 1

2n

�
uÿ f 0 2

�
1� 1

n
ÿ 2nY �

1� Y �

�#ÿ1
�66�

The displacement conditions for (65) are

f�0� � f0, g�0� � pÿ B, g 0�0� � g 00 �67�

where B is half of the notch angle. Further assuming that, the friction stress on the contact surface is
zero, i.e. txZ � 0 at x � 0, then according to Eqs. (11), (57) and (58), it follows that

f 0�0� � 0 �68�
At x � ÿ1, we have the boundary conditions to connect with sector EX,

f� ÿ1� � �1, g� ÿ1� � 0 �69�

Eq. (65) with boundary conditions (67)±(69) can be solved numerically. f0 is a free parameter to indicate
the amplitude of the ®eld. g 00 can be adjusted to meet the second condition of (69) when the second of
(67) is satis®ed. As for the singular exponent b, it can be determined by matching the sectors EX and
SH, see Section 6. For the time being b is considered as a known parameter.

It should be noted that, the constant T in Eq. (64) can be determined by f0 and g0,

T � ÿ�1� b�f 2n�2
0 � g 0 2n�10 �70�

An interesting fact found in the calculation is that for any ®xed b and g0 when x41,

Y �4
1

2nÿ 1
or v4 �2nÿ 1�

1
2n �71�

This fact is similar to that found by Gao (1998). According to (71) and (66), we can see,when xÿ1,
D�40, therefore (65) is asymptotically expressed as8><>:

f 00 ÿ fg 0 2 � 0

g 00 � 2f 0

f
g 0 � 0, when xÿ1 �72�

then the asymptotic behavior of f and g is

f � ÿCfx, g � ÿCgx
ÿ1, x4 ÿ1 �73�

Noting (71), we ®nd that Cg is related with Cf by
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Cg � 1

1� b
�2nÿ 1�

1
2nC ÿ2f �74�

Formula (73) is veri®ed by calculation. The value Cf is proportional to f0:
In order to reduce the calculation work, it is necessary to consider the nature of Eq. (65). Evidently, if

f �x� and g�x� is a set of solution to (65), then the following functions are also a set of solutions,

F�x� � kÿ1f
ÿ
k2x

�
, G�x� � g

ÿ
k2x

�
, �75�

in which k is an arbitrary constant. Therefore, the calculation will be done only for the case of f0 � 1,
then Y ��0� � ��1� b�g 00 �ÿ2n: Actually, the initial value Y ��0� directly controls the boundary condition
(69).

When Y ��0� � 1
2nÿ1 we found a very interesting case that

Y � � 1

2nÿ 1
, ÿ1 < x < 0 �76�

this will result in

f 00 ÿ fg 0 2 � 0, g 00 � 2
f 0

f
g 0 � 0 �77�

The solution of (77) is

f � f0
ÿ
1� K 2x2

�1=2
, g � p

2
� arctg�Kx�, K � �2nÿ 1�1=2nf ÿ2=�1� b� �78�

this solution is just for B � p=2, i.e. the rubber wedge becomes a half plane. So, for the contact problem
of a half plane with a rigid wedge, the completely analytical solution (77) is obtained.

Further calculation shows that Y ��0� > 1=�2nÿ 1� corresponds to B < p=2; Y ��0� < 1=�2nÿ 1�
corresponds to B > p=2: So, angle B directly in¯uence the solution.

6. Assembly of sectors

As mentioned before, there is no strict boundary between the sectors EX and SH (or SH '). Therefore,
the solutions of Eqs. (40) and (41) when y4p=2 must possess the same meaning as the solutions of Eq.
(65) when x4 ÿ1:

According to Eqs. (48), (50) and (73), when x4 ÿ1, we have,

R � r1ÿbCf�pÿ Aÿ y�, Y � raCg�pÿ Aÿ y�ÿ1 �79�
According to (41) and (44), when y4pÿ A, we have

h � Ch�pÿ Aÿ y�, m � Cm�pÿ Aÿ y�ÿ1 �80�
Where8><>:

Ch � h0�1ÿ d�ed

Cm � 1

1ÿ d� g
�2nÿ 1�

1
2nC ÿ2h

�81�
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Substituting Eq. (80) into (18), it follows that

R � r1ÿdCh�pÿ Aÿ y�, Y � rgCm�pÿ Aÿ y�ÿ1 �82�
Comparing Eqs. (79) and (82) it is required that

a � g, Cf � Ch �83�

b � d, Cg � Cm �84�
Evidently, Eqs. (83) and (84) are consistent with each other because of Eqs. (38), (71), (28) and (59).
Eqs. (74), (81), (83) and (84) only permit one free parameter h0 that characterize the amplitude of the
®eld. Thus, the sectors EX and SH are assembled. The assembly of EX and SH ' can be given similarly.

7. Numerical result

The numerical calculation is only for sector SH because the analytical solution is obtained for sector
EX. Since the varying interval of x�ÿ1, 0� is not convenient for calculation, the new variable z is
introduced such as

z � arctan x, ÿ p=2 < zR0 �85�
then Eq. (65) becomes8>><>>:

�fÿ 2 tan z � _fÿ f _g2
�

u

2n
� f 2 _g2

�
D� � 0

�gÿ 2 tan z � _g� 2 _f _gf ÿ1 � _f _gD� � 0

�86�

where

� � � � d

dz � � �87�

in (87), D� is still given by (66), but u and Y � are replaced by,8<: uÿ _f
2 ÿ f 2 _g2

Y � �
�
�1� b�f 2 _g cos2 z

�ÿ2n �88�

Let

Y0 � �2nÿ 1�Y ��0� �89�
For n = 2 and various A, B, the obtained values of Y0 are listed in Table 1. The curves of f �z� and g�z�
for n � 2, A � p=12 and various B are plotted in Fig. 3(a) and (b). Fig. 3 shows that at
z � 0 �x � 0�, f � 1, g � pÿ B; when z4 ÿ p=2 �x4 ÿ1�, f41, g40:It should be noted
that,f � R=r1�b, when f41 the mapping function (17) must be replaced by mapping function (18). The
numerical results show that when A > B the calculation is not stable. Besides, when B is small the
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convergence is very slow; when B is large the convergence is quick, but the calculation is not stable. For
n � 2, A � p=12, when B < 0:214p or B > 0:684p, the calculation cannot be done.

The lack of convergence and the unstability does not mean non-existence of a solution, as frequently
happened in the non-linear problems. When B is very small or large, maybe the features of EX sector
and SH sector are not so precise, so that the sector division method become not valid.

In order to plot the stress components, let(
t � tijei 
 ej �i, j � r or y�
T ij � r2nd�2na�ÿ1tij �i, j � r or y�

�90�

In sector SH, the dominant components of stress are T rr and T yy: However T yy � const, so only the
curves of T rr need to be plotted. From the ®rst of Eq. (60), it follows

T rr � Y �unv �91�

Table 1

The values of Y0

A

Y0

B 0 p=12 p=4 3p=8

p=4 33.6 69.6

5p=16 11.7 14.5 171.6

3p=8 5.20 5.77 9.81

7p=16 2.38 2.49 3.02 5.57

p=2 1.0 1.0 1.0 1.0

9p=16 0.342 0.327 0.275 0.185

5p=8 0.0820 0.0750 0.0533 0.0287

2p=3 0.0239 0.0213 0.0142

Fig. 3. Curves of f �z� and g�z� for A � p=12,n � 2: (a) f �z�, (b) g�z�:
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For f0 � 1, n � 2, A � p=12 and various B, T rr�z� is plotted in Fig. 4. From Fig. 4 we can see that when
B � p=2, T rr is constant; when B < p=2, T rr is an increasing function of z; when B > p=2, T rr is a
decreasing function of z:

The variable in Figs. 3 and 4 is z that can show the convergence precisely, in order to give an intuitive
showing of the curves, now we come back to the variable x � ÿ�pÿ Aÿ y�rÿa, the curves of f �x� and
g�x� are plotted in Fig. 5. The curves of T rr�x� are plotted in Fig. 6. Fig. 5(a) shows that when
x4 ÿ1, function R=r1�b�� f � becomes a straight line. Fig. 5(b) shows that when x4 ÿ1, function

Y�� g� tends to zero (transfer into EX sector). Fig. 6 shows that when x4 ÿ1, T rr tends to be a
constant; for the case of B � p=2, T rr keeps constant value everywhere.

Fig. 4. Curves of T rr�z� in sector SH for A � p=12,n � 2:

Fig. 5. Curves of f �x�,g�x� for A � p=12,n � 2: (a) f �x�, (b) g�x�:
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In sector EX, from (90) it follows8>>>>><>>>>>:
T rr � pnÿ1q

�
1

2nÿ 1
h 0 2 ÿ �1ÿ d�2h2

�
, T ry � ÿ2n�1ÿ d�

2nÿ 1
pnÿ1qhh 0

T yy � pnÿ1q

"
�1ÿ d�2
2nÿ 1

h2 ÿ h 0 2

# �92�

Using Eqs. (44) and (91), the curves of T rr, T ry and T yy are plotted in Fig. 7 for h0 � 1, n � 2, A �
p=12: It is shown that at y � pÿ A, T rr > 0, T yy < 0, T ry � 0: It should be noted that the curves are
independent of the angle B.

Fig. 6. Curves of T rr�x� in sector SH for A � p=12,n � 2:

Fig. 7. Curves of normalized stresses in sector EX for A � p=12,n � 2:
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8. Conclusions

1. The elastic contact problem of two smooth surfaces can be solved by either linear or nonlinear
geometry theory depending on the magnitude of strain.

2. The contact problem with vertex point cannot be solved by linear geometry theory. In the small
strain theory, the vertex contact problem is always equivalent to that of a concentrated force acting
on the bodies, i.e. the contact area is zero.

3. For the kind of elastic materials discussed in this paper the vertex contact problem was solved. The
deformation ®eld contains an expanding sector and two shrinking sectors. The stress and strain
possess singularity, t0rÿ2nd, d0rÿ2d, the singular exponent d only depends on the value n and the
angle of rigid wedge A, but not on the angle of rubber notch (wedge) B.

4. For sector EX the analytical solution is similar to that obtained by Gao (1999a) for notch tip ®eld in
SH sector but for inverse mapping functions.

5. When B < 0:214p or B > 0:684p, the calculation cannot be done because of very slow convergence or
unstability, but this does not mean that the solution does not exist. May be the features of SH sector
and EX sector are not that distinct therefore the sector division method is not valid.

6. When B � p=2, the notch vanishes and becomes a half plane, the completely analytical solution was
obtained for both sector EX and SH. This result is consistent with that obtained by Gao (1998), but
it is completely di�erent from linear elastic solution.

7. The contact zone is continuous along the wedge franks, and the length of the contact zone depends
on the load but that cannot be determined by the asymptotic solution.

8. The solution given in this paper is also valid for the problem of a rubber wedge �B > p=2� contacting
with a rigid wedge.
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